Goodness-of-Fit Tests and Nonparametric Adaptive Estimation for Spike Train Analysis
نویسندگان
چکیده
When dealing with classical spike train analysis, the practitioner often performs goodness-of-fit tests to test whether the observed process is a Poisson process, for instance, or if it obeys another type of probabilistic model (Yana et al. in Biophys. J. 46(3):323-330, 1984; Brown et al. in Neural Comput. 14(2):325-346, 2002; Pouzat and Chaffiol in Technical report, http://arxiv.org/abs/arXiv:0909.2785, 2009). In doing so, there is a fundamental plug-in step, where the parameters of the supposed underlying model are estimated. The aim of this article is to show that plug-in has sometimes very undesirable effects. We propose a new method based on subsampling to deal with those plug-in issues in the case of the Kolmogorov-Smirnov test of uniformity. The method relies on the plug-in of good estimates of the underlying model that have to be consistent with a controlled rate of convergence. Some nonparametric estimates satisfying those constraints in the Poisson or in the Hawkes framework are highlighted. Moreover, they share adaptive properties that are useful from a practical point of view. We show the performance of those methods on simulated data. We also provide a complete analysis with these tools on single unit activity recorded on a monkey during a sensory-motor task.Electronic Supplementary MaterialThe online version of this article (doi:10.1186/2190-8567-4-3) contains supplementary material.
منابع مشابه
Additional File 1 of ”Goodness-of-fit tests and non- parametric adaptive estimation for spike train analysis”: Kolmogorov-Smirnov tests, plug-in and sub-sampling
متن کامل
The Time-Rescaling Theorem and Its Application to Neural Spike Train Data Analysis
Measuring agreement between a statistical model and a spike train data series, that is, evaluating goodness of fit, is crucial for establishing the model's validity prior to using it to make inferences about a particular neural system. Assessing goodness-of-fit is a challenging problem for point process neural spike train models, especially for histogram-based models such as perstimulus time hi...
متن کاملThree Papers by Peter Bickel on Nonparametric Curve Estimation
The following is a brief review of three landmark papers of Peter Bickel on theoretical and methodological aspects of nonparametric density and regression estimation and the related topic of goodness-of-fit testing, including a class of semiparametric goodness-of-fit tests. We consider the context of these papers, their contribution and their impact. Bickel’s first work on density estimation wa...
متن کاملCapturing Spike Variability in Noisy Izhikevich Neurons Using Point Process Generalized Linear Models
To understand neural activity, two broad categories of models exist: statistical and dynamical. While statistical models possess rigorous methods for parameter estimation and goodness-of-fit assessment, dynamical models provide mechanistic insight. In general, these two categories of models are separately applied; understanding the relationships between these modeling approaches remains an area...
متن کاملA New Goodness-of-Fit Test for a Distribution by the Empirical Characteristic Function
Extended Abstract. Suppose n i.i.d. observations, X1, …, Xn, are available from the unknown distribution F(.), goodness-of-fit tests refer to tests such as H0 : F(x) = F0(x) against H1 : F(x) $neq$ F0(x). Some nonparametric tests such as the Kolmogorov--Smirnov test, the Cramer-Von Mises test, the Anderson-Darling test and the Watson test have been suggested by comparing empirical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014